3.717 \(\int \frac {x (A+B x)}{(a^2+2 a b x+b^2 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=113 \[ -\frac {A b-2 a B}{b^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {a (A b-a B)}{2 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {B (a+b x) \log (a+b x)}{b^3 \sqrt {a^2+2 a b x+b^2 x^2}} \]

[Out]

(-A*b+2*B*a)/b^3/((b*x+a)^2)^(1/2)+1/2*a*(A*b-B*a)/b^3/(b*x+a)/((b*x+a)^2)^(1/2)+B*(b*x+a)*ln(b*x+a)/b^3/((b*x
+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {770, 77} \[ -\frac {A b-2 a B}{b^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {a (A b-a B)}{2 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {B (a+b x) \log (a+b x)}{b^3 \sqrt {a^2+2 a b x+b^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(A + B*x))/(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

-((A*b - 2*a*B)/(b^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])) + (a*(A*b - a*B))/(2*b^3*(a + b*x)*Sqrt[a^2 + 2*a*b*x + b
^2*x^2]) + (B*(a + b*x)*Log[a + b*x])/(b^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {x (A+B x)}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx &=\frac {\left (b^2 \left (a b+b^2 x\right )\right ) \int \frac {x (A+B x)}{\left (a b+b^2 x\right )^3} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=\frac {\left (b^2 \left (a b+b^2 x\right )\right ) \int \left (\frac {a (-A b+a B)}{b^5 (a+b x)^3}+\frac {A b-2 a B}{b^5 (a+b x)^2}+\frac {B}{b^5 (a+b x)}\right ) \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {A b-2 a B}{b^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {a (A b-a B)}{2 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {B (a+b x) \log (a+b x)}{b^3 \sqrt {a^2+2 a b x+b^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 65, normalized size = 0.58 \[ \frac {3 a^2 B-a b (A-4 B x)+2 B (a+b x)^2 \log (a+b x)-2 A b^2 x}{2 b^3 (a+b x) \sqrt {(a+b x)^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(A + B*x))/(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(3*a^2*B - 2*A*b^2*x - a*b*(A - 4*B*x) + 2*B*(a + b*x)^2*Log[a + b*x])/(2*b^3*(a + b*x)*Sqrt[(a + b*x)^2])

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 81, normalized size = 0.72 \[ \frac {3 \, B a^{2} - A a b + 2 \, {\left (2 \, B a b - A b^{2}\right )} x + 2 \, {\left (B b^{2} x^{2} + 2 \, B a b x + B a^{2}\right )} \log \left (b x + a\right )}{2 \, {\left (b^{5} x^{2} + 2 \, a b^{4} x + a^{2} b^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

1/2*(3*B*a^2 - A*a*b + 2*(2*B*a*b - A*b^2)*x + 2*(B*b^2*x^2 + 2*B*a*b*x + B*a^2)*log(b*x + a))/(b^5*x^2 + 2*a*
b^4*x + a^2*b^3)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 83, normalized size = 0.73 \[ -\frac {\left (-2 B \,b^{2} x^{2} \ln \left (b x +a \right )-4 B a b x \ln \left (b x +a \right )+2 A \,b^{2} x -2 B \,a^{2} \ln \left (b x +a \right )-4 B a b x +A a b -3 B \,a^{2}\right ) \left (b x +a \right )}{2 \left (\left (b x +a \right )^{2}\right )^{\frac {3}{2}} b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x)

[Out]

-1/2*(-2*B*ln(b*x+a)*x^2*b^2-4*B*ln(b*x+a)*x*a*b+2*A*b^2*x-2*B*a^2*ln(b*x+a)-4*B*a*b*x+A*a*b-3*B*a^2)*(b*x+a)/
b^3/((b*x+a)^2)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 89, normalized size = 0.79 \[ \frac {B \log \left (x + \frac {a}{b}\right )}{b^{3}} - \frac {A}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2}} b^{2}} + \frac {2 \, B a x}{b^{4} {\left (x + \frac {a}{b}\right )}^{2}} + \frac {3 \, B a^{2}}{2 \, b^{5} {\left (x + \frac {a}{b}\right )}^{2}} + \frac {A a}{2 \, b^{4} {\left (x + \frac {a}{b}\right )}^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

B*log(x + a/b)/b^3 - A/(sqrt(b^2*x^2 + 2*a*b*x + a^2)*b^2) + 2*B*a*x/(b^4*(x + a/b)^2) + 3/2*B*a^2/(b^5*(x + a
/b)^2) + 1/2*A*a/(b^4*(x + a/b)^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,\left (A+B\,x\right )}{{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(A + B*x))/(a^2 + b^2*x^2 + 2*a*b*x)^(3/2),x)

[Out]

int((x*(A + B*x))/(a^2 + b^2*x^2 + 2*a*b*x)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (A + B x\right )}{\left (\left (a + b x\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x+A)/(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Integral(x*(A + B*x)/((a + b*x)**2)**(3/2), x)

________________________________________________________________________________________